# -*- coding: utf-8 -*-
#
# Copyright 2012-2015 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
The abstract :py:class:`Task` class.
It is a central concept of Luigi and represents the state of the workflow.
See :doc:`/tasks` for an overview.
"""
from collections import deque, OrderedDict
from contextlib import contextmanager
import logging
import traceback
import warnings
import json
import hashlib
import re
import copy
import functools
from typing import Any, Dict, Optional
import luigi
from luigi import configuration
from luigi import parameter
from luigi.task_register import Register
from luigi.parameter import ParameterVisibility
from luigi.parameter import UnconsumedParameterWarning
Parameter = parameter.Parameter
logger = logging.getLogger('luigi-interface')
TASK_ID_INCLUDE_PARAMS = 3
TASK_ID_TRUNCATE_PARAMS = 16
TASK_ID_TRUNCATE_HASH = 10
TASK_ID_INVALID_CHAR_REGEX = re.compile(r'[^A-Za-z0-9_]')
_SAME_AS_PYTHON_MODULE = '_same_as_python_module'
[docs]
def namespace(namespace=None, scope=''):
"""
Call to set namespace of tasks declared after the call.
It is often desired to call this function with the keyword argument
``scope=__name__``.
The ``scope`` keyword makes it so that this call is only effective for task
classes with a matching [*]_ ``__module__``. The default value for
``scope`` is the empty string, which means all classes. Multiple calls with
the same scope simply replace each other.
The namespace of a :py:class:`Task` can also be changed by specifying the property
``task_namespace``.
.. code-block:: python
class Task2(luigi.Task):
task_namespace = 'namespace2'
This explicit setting takes priority over whatever is set in the
``namespace()`` method, and it's also inherited through normal python
inheritence.
There's no equivalent way to set the ``task_family``.
*New since Luigi 2.6.0:* ``scope`` keyword argument.
.. [*] When there are multiple levels of matching module scopes like
``a.b`` vs ``a.b.c``, the more specific one (``a.b.c``) wins.
.. seealso:: The new and better scaling :py:func:`auto_namespace`
"""
Register._default_namespace_dict[scope] = namespace or ''
[docs]
def auto_namespace(scope=''):
"""
Same as :py:func:`namespace`, but instead of a constant namespace, it will
be set to the ``__module__`` of the task class. This is desirable for these
reasons:
* Two tasks with the same name will not have conflicting task families
* It's more pythonic, as modules are Python's recommended way to
do namespacing.
* It's traceable. When you see the full name of a task, you can immediately
identify where it is defined.
We recommend calling this function from your package's outermost
``__init__.py`` file. The file contents could look like this:
.. code-block:: python
import luigi
luigi.auto_namespace(scope=__name__)
To reset an ``auto_namespace()`` call, you can use
``namespace(scope='my_scope')``. But this will not be
needed (and is also discouraged) if you use the ``scope`` kwarg.
*New since Luigi 2.6.0.*
"""
namespace(namespace=_SAME_AS_PYTHON_MODULE, scope=scope)
[docs]
def task_id_str(task_family, params):
"""
Returns a canonical string used to identify a particular task
:param task_family: The task family (class name) of the task
:param params: a dict mapping parameter names to their serialized values
:return: A unique, shortened identifier corresponding to the family and params
"""
# task_id is a concatenation of task family, the first values of the first 3 parameters
# sorted by parameter name and a md5hash of the family/parameters as a cananocalised json.
param_str = json.dumps(params, separators=(',', ':'), sort_keys=True)
param_hash = hashlib.new('md5', param_str.encode('utf-8'), usedforsecurity=False).hexdigest()
param_summary = '_'.join(p[:TASK_ID_TRUNCATE_PARAMS]
for p in (params[p] for p in sorted(params)[:TASK_ID_INCLUDE_PARAMS]))
param_summary = TASK_ID_INVALID_CHAR_REGEX.sub('_', param_summary)
return '{}_{}_{}'.format(task_family, param_summary, param_hash[:TASK_ID_TRUNCATE_HASH])
[docs]
class BulkCompleteNotImplementedError(NotImplementedError):
"""This is here to trick pylint.
pylint thinks anything raising NotImplementedError needs to be implemented
in any subclass. bulk_complete isn't like that. This tricks pylint into
thinking that the default implementation is a valid implementation and not
an abstract method."""
pass
[docs]
class Task(metaclass=Register):
"""
This is the base class of all Luigi Tasks, the base unit of work in Luigi.
A Luigi Task describes a unit or work.
The key methods of a Task, which must be implemented in a subclass are:
* :py:meth:`run` - the computation done by this task.
* :py:meth:`requires` - the list of Tasks that this Task depends on.
* :py:meth:`output` - the output :py:class:`Target` that this Task creates.
Each :py:class:`~luigi.Parameter` of the Task should be declared as members:
.. code:: python
class MyTask(luigi.Task):
count = luigi.IntParameter()
second_param = luigi.Parameter()
In addition to any declared properties and methods, there are a few
non-declared properties, which are created by the :py:class:`Register`
metaclass:
"""
_event_callbacks: Dict[Any, Any] = {}
#: Priority of the task: the scheduler should favor available
#: tasks with higher priority values first.
#: See :ref:`Task.priority`
priority = 0
disabled = False
#: Resources used by the task. Should be formatted like {"scp": 1} to indicate that the
#: task requires 1 unit of the scp resource.
resources: Dict[str, Any] = {}
#: Number of seconds after which to time out the run function.
#: No timeout if set to 0.
#: Defaults to 0 or worker-timeout value in config
worker_timeout: Optional[int] = None
#: Maximum number of tasks to run together as a batch. Infinite by default
max_batch_size = float('inf')
@property
def batchable(self):
"""
True if this instance can be run as part of a batch. By default, True
if it has any batched parameters
"""
return bool(self.batch_param_names())
@property
def retry_count(self):
"""
Override this positive integer to have different ``retry_count`` at task level
Check :ref:`scheduler-config`
"""
return None
@property
def disable_hard_timeout(self):
"""
Override this positive integer to have different ``disable_hard_timeout`` at task level.
Check :ref:`scheduler-config`
"""
return None
@property
def disable_window(self):
"""
Override this positive integer to have different ``disable_window`` at task level.
Check :ref:`scheduler-config`
"""
return None
@property
def disable_window_seconds(self):
warnings.warn("Use of `disable_window_seconds` has been deprecated, use `disable_window` instead", DeprecationWarning)
return self.disable_window
@property
def owner_email(self):
'''
Override this to send out additional error emails to task owner, in addition to the one
defined in the global configuration. This should return a string or a list of strings. e.g.
'test@exmaple.com' or ['test1@example.com', 'test2@example.com']
'''
return None
def _owner_list(self):
"""
Turns the owner_email property into a list. This should not be overridden.
"""
owner_email = self.owner_email
if owner_email is None:
return []
elif isinstance(owner_email, str):
return owner_email.split(',')
else:
return owner_email
@property
def use_cmdline_section(self):
''' Property used by core config such as `--workers` etc.
These will be exposed without the class as prefix.'''
return True
[docs]
@classmethod
def event_handler(cls, event):
"""
Decorator for adding event handlers.
"""
def wrapped(callback):
cls._event_callbacks.setdefault(cls, {}).setdefault(event, set()).add(callback)
return callback
return wrapped
[docs]
@classmethod
def remove_event_handler(cls, event, callback):
"""
Function to remove the event handler registered previously by the cls.event_handler decorator.
"""
cls._event_callbacks[cls][event].remove(callback)
[docs]
def trigger_event(self, event, *args, **kwargs):
"""
Trigger that calls all of the specified events associated with this class.
"""
for event_class, event_callbacks in self._event_callbacks.items():
if not isinstance(self, event_class):
continue
for callback in event_callbacks.get(event, []):
try:
# callbacks are protected
callback(*args, **kwargs)
except KeyboardInterrupt:
return
except BaseException:
logger.exception("Error in event callback for %r", event)
@property
def accepts_messages(self):
"""
For configuring which scheduler messages can be received. When falsy, this tasks does not
accept any message. When True, all messages are accepted.
"""
return False
@property
def task_module(self):
''' Returns what Python module to import to get access to this class. '''
# TODO(erikbern): we should think about a language-agnostic mechanism
return self.__class__.__module__
_visible_in_registry = True # TODO: Consider using in luigi.util as well
__not_user_specified = '__not_user_specified'
# This is here just to help pylint, the Register metaclass will always set
# this value anyway.
_namespace_at_class_time = None
task_namespace = __not_user_specified
"""
This value can be overridden to set the namespace that will be used.
(See :ref:`Task.namespaces_famlies_and_ids`)
If it's not specified and you try to read this value anyway, it will return
garbage. Please use :py:meth:`get_task_namespace` to read the namespace.
Note that setting this value with ``@property`` will not work, because this
is a class level value.
"""
[docs]
@classmethod
def get_task_namespace(cls):
"""
The task family for the given class.
Note: You normally don't want to override this.
"""
if cls.task_namespace != cls.__not_user_specified:
return cls.task_namespace
elif cls._namespace_at_class_time == _SAME_AS_PYTHON_MODULE:
return cls.__module__
return cls._namespace_at_class_time
@property
def task_family(self):
"""
DEPRECATED since after 2.4.0. See :py:meth:`get_task_family` instead.
Hopefully there will be less meta magic in Luigi.
Convenience method since a property on the metaclass isn't directly
accessible through the class instances.
"""
return self.__class__.task_family
[docs]
@classmethod
def get_task_family(cls):
"""
The task family for the given class.
If ``task_namespace`` is not set, then it's simply the name of the
class. Otherwise, ``<task_namespace>.`` is prefixed to the class name.
Note: You normally don't want to override this.
"""
if not cls.get_task_namespace():
return cls.__name__
else:
return "{}.{}".format(cls.get_task_namespace(), cls.__name__)
[docs]
@classmethod
def get_params(cls):
"""
Returns all of the Parameters for this Task.
"""
# We want to do this here and not at class instantiation, or else there is no room to extend classes dynamically
params = []
for param_name in dir(cls):
param_obj = getattr(cls, param_name)
if not isinstance(param_obj, Parameter):
continue
params.append((param_name, param_obj))
# The order the parameters are created matters. See Parameter class
params.sort(key=lambda t: t[1]._counter)
return params
[docs]
@classmethod
def batch_param_names(cls):
return [name for name, p in cls.get_params() if p._is_batchable()]
[docs]
@classmethod
def get_param_names(cls, include_significant=False):
return [name for name, p in cls.get_params() if include_significant or p.significant]
[docs]
@classmethod
def get_param_values(cls, params, args, kwargs):
"""
Get the values of the parameters from the args and kwargs.
:param params: list of (param_name, Parameter).
:param args: positional arguments
:param kwargs: keyword arguments.
:returns: list of `(name, value)` tuples, one for each parameter.
"""
result = {}
params_dict = dict(params)
task_family = cls.get_task_family()
# In case any exceptions are thrown, create a helpful description of how the Task was invoked
# TODO: should we detect non-reprable arguments? These will lead to mysterious errors
exc_desc = '%s[args=%s, kwargs=%s]' % (task_family, args, kwargs)
# Fill in the positional arguments
positional_params = [(n, p) for n, p in params if p.positional]
for i, arg in enumerate(args):
if i >= len(positional_params):
raise parameter.UnknownParameterException('%s: takes at most %d parameters (%d given)' % (exc_desc, len(positional_params), len(args)))
param_name, param_obj = positional_params[i]
result[param_name] = param_obj.normalize(arg)
# Then the keyword arguments
for param_name, arg in kwargs.items():
if param_name in result:
raise parameter.DuplicateParameterException('%s: parameter %s was already set as a positional parameter' % (exc_desc, param_name))
if param_name not in params_dict:
raise parameter.UnknownParameterException('%s: unknown parameter %s' % (exc_desc, param_name))
result[param_name] = params_dict[param_name].normalize(arg)
# Then use the defaults for anything not filled in
for param_name, param_obj in params:
if param_name not in result:
try:
has_task_value = param_obj.has_task_value(task_family, param_name)
except Exception as exc:
raise ValueError("%s: Error when parsing the default value of '%s'" % (exc_desc, param_name)) from exc
if not has_task_value:
raise parameter.MissingParameterException("%s: requires the '%s' parameter to be set" % (exc_desc, param_name))
result[param_name] = param_obj.task_value(task_family, param_name)
def list_to_tuple(x):
""" Make tuples out of lists and sets to allow hashing """
if isinstance(x, list) or isinstance(x, set):
return tuple(x)
else:
return x
# Check for unconsumed parameters
conf = configuration.get_config()
if not hasattr(cls, "_unconsumed_params"):
cls._unconsumed_params = set()
if task_family in conf.sections():
ignore_unconsumed = getattr(cls, 'ignore_unconsumed', set())
for key, value in conf[task_family].items():
key = key.replace('-', '_')
composite_key = f"{task_family}_{key}"
if key not in result and key not in ignore_unconsumed and composite_key not in cls._unconsumed_params:
warnings.warn(
"The configuration contains the parameter "
f"'{key}' with value '{value}' that is not consumed by the task "
f"'{task_family}'.",
UnconsumedParameterWarning,
)
cls._unconsumed_params.add(composite_key)
# Sort it by the correct order and make a list
return [(param_name, list_to_tuple(result[param_name])) for param_name, param_obj in params]
def __init__(self, *args, **kwargs):
params = self.get_params()
param_values = self.get_param_values(params, args, kwargs)
# Set all values on class instance
for key, value in param_values:
setattr(self, key, value)
# Register kwargs as an attribute on the class. Might be useful
self.param_kwargs = dict(param_values)
self._warn_on_wrong_param_types()
self.task_id = task_id_str(self.get_task_family(), self.to_str_params(only_significant=True, only_public=True))
self.__hash = hash(self.task_id)
self.set_tracking_url = None
self.set_status_message = None
self.set_progress_percentage = None
@property
def param_args(self):
warnings.warn("Use of param_args has been deprecated.", DeprecationWarning)
return tuple(self.param_kwargs[k] for k, v in self.get_params())
[docs]
def initialized(self):
"""
Returns ``True`` if the Task is initialized and ``False`` otherwise.
"""
return hasattr(self, 'task_id')
def _warn_on_wrong_param_types(self):
params = dict(self.get_params())
for param_name, param_value in self.param_kwargs.items():
params[param_name]._warn_on_wrong_param_type(param_name, param_value)
[docs]
@classmethod
def from_str_params(cls, params_str):
"""
Creates an instance from a str->str hash.
:param params_str: dict of param name -> value as string.
"""
kwargs = {}
for param_name, param in cls.get_params():
if param_name in params_str:
param_str = params_str[param_name]
if isinstance(param_str, list):
kwargs[param_name] = param._parse_list(param_str)
else:
kwargs[param_name] = param.parse(param_str)
return cls(**kwargs)
[docs]
def to_str_params(self, only_significant=False, only_public=False):
"""
Convert all parameters to a str->str hash.
"""
params_str = {}
params = dict(self.get_params())
for param_name, param_value in self.param_kwargs.items():
if (((not only_significant) or params[param_name].significant)
and ((not only_public) or params[param_name].visibility == ParameterVisibility.PUBLIC)
and params[param_name].visibility != ParameterVisibility.PRIVATE):
params_str[param_name] = params[param_name].serialize(param_value)
return params_str
def _get_param_visibilities(self):
param_visibilities = {}
params = dict(self.get_params())
for param_name, param_value in self.param_kwargs.items():
if params[param_name].visibility != ParameterVisibility.PRIVATE:
param_visibilities[param_name] = params[param_name].visibility.serialize()
return param_visibilities
[docs]
def clone(self, cls=None, **kwargs):
"""
Creates a new instance from an existing instance where some of the args have changed.
There's at least two scenarios where this is useful (see test/clone_test.py):
* remove a lot of boiler plate when you have recursive dependencies and lots of args
* there's task inheritance and some logic is on the base class
:param cls:
:param kwargs:
:return:
"""
if cls is None:
cls = self.__class__
new_k = {}
for param_name, param_class in cls.get_params():
if param_name in kwargs:
new_k[param_name] = kwargs[param_name]
elif hasattr(self, param_name):
new_k[param_name] = getattr(self, param_name)
return cls(**new_k)
def __hash__(self):
return self.__hash
def __repr__(self):
"""
Build a task representation like `MyTask(param1=1.5, param2='5')`
"""
params = self.get_params()
param_values = self.get_param_values(params, [], self.param_kwargs)
# Build up task id
repr_parts = []
param_objs = dict(params)
for param_name, param_value in param_values:
if param_objs[param_name].significant:
repr_parts.append('%s=%s' % (param_name, param_objs[param_name].serialize(param_value)))
task_str = '{}({})'.format(self.get_task_family(), ', '.join(repr_parts))
return task_str
def __eq__(self, other):
return self.__class__ == other.__class__ and self.task_id == other.task_id
[docs]
def complete(self):
"""
If the task has any outputs, return ``True`` if all outputs exist.
Otherwise, return ``False``.
However, you may freely override this method with custom logic.
"""
outputs = flatten(self.output())
if len(outputs) == 0:
warnings.warn(
"Task %r without outputs has no custom complete() method" % self,
stacklevel=2
)
return False
return all(map(lambda output: output.exists(), outputs))
[docs]
@classmethod
def bulk_complete(cls, parameter_tuples):
"""
Returns those of parameter_tuples for which this Task is complete.
Override (with an efficient implementation) for efficient scheduling
with range tools. Keep the logic consistent with that of complete().
"""
raise BulkCompleteNotImplementedError()
[docs]
def output(self):
"""
The output that this Task produces.
The output of the Task determines if the Task needs to be run--the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single :py:class:`Target` or a list of
:py:class:`Target` instances.
Implementation note
If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don't see the work done by other workers.
See :ref:`Task.output`
"""
return [] # default impl
[docs]
def requires(self):
"""
The Tasks that this Task depends on.
A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don't need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.
See :ref:`Task.requires`
"""
return [] # default impl
def _requires(self):
"""
Override in "template" tasks which themselves are supposed to be
subclassed and thus have their requires() overridden (name preserved to
provide consistent end-user experience), yet need to introduce
(non-input) dependencies.
Must return an iterable which among others contains the _requires() of
the superclass.
"""
return flatten(self.requires()) # base impl
[docs]
def process_resources(self):
"""
Override in "template" tasks which provide common resource functionality
but allow subclasses to specify additional resources while preserving
the name for consistent end-user experience.
"""
return self.resources # default impl
[docs]
def deps(self):
"""
Internal method used by the scheduler.
Returns the flattened list of requires.
"""
# used by scheduler
return flatten(self._requires())
[docs]
def run(self):
"""
The task run method, to be overridden in a subclass.
See :ref:`Task.run`
"""
pass # default impl
[docs]
def on_failure(self, exception):
"""
Override for custom error handling.
This method gets called if an exception is raised in :py:meth:`run`.
The returned value of this method is json encoded and sent to the scheduler
as the `expl` argument. Its string representation will be used as the
body of the error email sent out if any.
Default behavior is to return a string representation of the stack trace.
"""
traceback_string = traceback.format_exc()
return "Runtime error:\n%s" % traceback_string
[docs]
def on_success(self):
"""
Override for doing custom completion handling for a larger class of tasks
This method gets called when :py:meth:`run` completes without raising any exceptions.
The returned value is json encoded and sent to the scheduler as the `expl` argument.
Default behavior is to send an None value"""
pass
[docs]
@contextmanager
def no_unpicklable_properties(self):
"""
Remove unpicklable properties before dump task and resume them after.
This method could be called in subtask's dump method, to ensure unpicklable
properties won't break dump.
This method is a context-manager which can be called as below:
.. code-block: python
class DummyTask(luigi):
def _dump(self):
with self.no_unpicklable_properties():
pickle.dumps(self)
"""
unpicklable_properties = tuple(luigi.worker.TaskProcess.forward_reporter_attributes.values())
reserved_properties = {}
for property_name in unpicklable_properties:
if hasattr(self, property_name):
reserved_properties[property_name] = getattr(self, property_name)
setattr(self, property_name, 'placeholder_during_pickling')
yield
for property_name, value in reserved_properties.items():
setattr(self, property_name, value)
[docs]
class MixinNaiveBulkComplete:
"""
Enables a Task to be efficiently scheduled with e.g. range tools, by providing a bulk_complete implementation which checks completeness in a loop.
Applicable to tasks whose completeness checking is cheap.
This doesn't exploit output location specific APIs for speed advantage, nevertheless removes redundant scheduler roundtrips.
"""
[docs]
@classmethod
def bulk_complete(cls, parameter_tuples):
generated_tuples = []
for parameter_tuple in parameter_tuples:
if isinstance(parameter_tuple, (list, tuple)):
if cls(*parameter_tuple).complete():
generated_tuples.append(parameter_tuple)
elif isinstance(parameter_tuple, dict):
if cls(**parameter_tuple).complete():
generated_tuples.append(parameter_tuple)
else:
if cls(parameter_tuple).complete():
generated_tuples.append(parameter_tuple)
return generated_tuples
[docs]
class DynamicRequirements(object):
"""
Wraps dynamic requirements yielded in tasks's run methods to control how completeness checks of
(e.g.) large chunks of tasks are performed. Besides the wrapped *requirements*, instances of
this class can be passed an optional function *custom_complete* that might implement an
optimized check for completeness. If set, the function will be called with a single argument,
*complete_fn*, which should be used to perform the per-task check. Example:
.. code-block:: python
class SomeTaskWithDynamicRequirements(luigi.Task):
...
def run(self):
large_chunk_of_tasks = [OtherTask(i=i) for i in range(10000)]
def custom_complete(complete_fn):
# example: assume OtherTask always write into the same directory, so just check
# if the first task is complete, and compare basenames for the rest
if not complete_fn(large_chunk_of_tasks[0]):
return False
paths = [task.output().path for task in large_chunk_of_tasks]
basenames = os.listdir(os.path.dirname(paths[0])) # a single fs call
return all(os.path.basename(path) in basenames for path in paths)
yield DynamicRequirements(large_chunk_of_tasks, custom_complete)
.. py:attribute:: requirements
The original, wrapped requirements.
.. py:attribute:: flat_requirements
Flattened view of the wrapped requirements (via :py:func:`flatten`). Read only.
.. py:attribute:: paths
Outputs of the requirements in the identical structure (via :py:func:`getpaths`). Read only.
.. py:attribute:: custom_complete
The optional, custom function performing the completeness check of the wrapped requirements.
"""
def __init__(self, requirements, custom_complete=None):
super().__init__()
# store attributes
self.requirements = requirements
self.custom_complete = custom_complete
# cached flat requirements and paths
self._flat_requirements = None
self._paths = None
@property
def flat_requirements(self):
if self._flat_requirements is None:
self._flat_requirements = flatten(self.requirements)
return self._flat_requirements
@property
def paths(self):
if self._paths is None:
self._paths = getpaths(self.requirements)
return self._paths
[docs]
def complete(self, complete_fn=None):
# default completeness check
if complete_fn is None:
def complete_fn(task):
return task.complete()
# use the custom complete function when set
if self.custom_complete:
return self.custom_complete(complete_fn)
# default implementation
return all(complete_fn(t) for t in self.flat_requirements)
[docs]
class ExternalTask(Task):
"""
Subclass for references to external dependencies.
An ExternalTask's does not have a `run` implementation, which signifies to
the framework that this Task's :py:meth:`output` is generated outside of
Luigi.
"""
run = None
[docs]
def externalize(taskclass_or_taskobject):
"""
Returns an externalized version of a Task. You may both pass an
instantiated task object or a task class. Some examples:
.. code-block:: python
class RequiringTask(luigi.Task):
def requires(self):
task_object = self.clone(MyTask)
return externalize(task_object)
...
Here's mostly equivalent code, but ``externalize`` is applied to a task
class instead.
.. code-block:: python
@luigi.util.requires(externalize(MyTask))
class RequiringTask(luigi.Task):
pass
...
Of course, it may also be used directly on classes and objects (for example
for reexporting or other usage).
.. code-block:: python
MyTask = externalize(MyTask)
my_task_2 = externalize(MyTask2(param='foo'))
If you however want a task class to be external from the beginning, you're
better off inheriting :py:class:`ExternalTask` rather than :py:class:`Task`.
This function tries to be side-effect free by creating a copy of the class
or the object passed in and then modify that object. In particular this
code shouldn't do anything.
.. code-block:: python
externalize(MyTask) # BAD: This does nothing (as after luigi 2.4.0)
"""
copied_value = copy.copy(taskclass_or_taskobject)
if copied_value is taskclass_or_taskobject:
# Assume it's a class
clazz = taskclass_or_taskobject
@_task_wraps(clazz)
class _CopyOfClass(clazz):
# How to copy a class: http://stackoverflow.com/a/9541120/621449
_visible_in_registry = False
_CopyOfClass.run = None
return _CopyOfClass
else:
# We assume it's an object
copied_value.run = None
return copied_value
[docs]
class WrapperTask(Task):
"""
Use for tasks that only wrap other tasks and that by definition are done if all their requirements exist.
"""
[docs]
def complete(self):
return all(r.complete() for r in flatten(self.requires()))
[docs]
class Config(Task):
"""
Class for configuration. See :ref:`ConfigClasses`.
"""
# TODO: let's refactor Task & Config so that it inherits from a common
# ParamContainer base class
pass
[docs]
def getpaths(struct):
"""
Maps all Tasks in a structured data object to their .output().
"""
if isinstance(struct, Task):
return struct.output()
elif isinstance(struct, dict):
return struct.__class__((k, getpaths(v)) for k, v in struct.items())
elif isinstance(struct, (list, tuple)):
return struct.__class__(getpaths(r) for r in struct)
else:
# Remaining case: assume struct is iterable...
try:
return [getpaths(r) for r in struct]
except TypeError:
raise Exception('Cannot map %s to Task/dict/list' % str(struct))
[docs]
def flatten(struct):
"""
Creates a flat list of all items in structured output (dicts, lists, items):
.. code-block:: python
>>> sorted(flatten({'a': 'foo', 'b': 'bar'}))
['bar', 'foo']
>>> sorted(flatten(['foo', ['bar', 'troll']]))
['bar', 'foo', 'troll']
>>> flatten('foo')
['foo']
>>> flatten(42)
[42]
"""
if struct is None:
return []
flat = []
if isinstance(struct, dict):
for _, result in struct.items():
flat += flatten(result)
return flat
if isinstance(struct, str):
return [struct]
try:
# if iterable
iterator = iter(struct)
except TypeError:
return [struct]
for result in iterator:
flat += flatten(result)
return flat
[docs]
def flatten_output(task):
"""
Lists all output targets by recursively walking output-less (wrapper) tasks.
"""
output_tasks = OrderedDict() # OrderedDict used as ordered set
tasks_to_process = deque([task])
while tasks_to_process:
current_task = tasks_to_process.popleft()
if flatten(current_task.output()):
if current_task not in output_tasks:
output_tasks[current_task] = None
else:
tasks_to_process.extend(flatten(current_task.requires()))
return flatten(task.output() for task in output_tasks)
def _task_wraps(task_class):
# In order to make the behavior of a wrapper class nicer, we set the name of the
# new class to the wrapped class, and copy over the docstring and module as well.
# This makes it possible to pickle the wrapped class etc.
# Btw, this is a slight abuse of functools.wraps. It's meant to be used only for
# functions, but it works for classes too, if you pass updated=[]
assigned = functools.WRAPPER_ASSIGNMENTS + ('_namespace_at_class_time',)
return functools.wraps(task_class, assigned=assigned, updated=[])